Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Struct Mol Biol ; 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38321148

RESUMO

Despite the importance of citrullination in physiology and disease, global identification of citrullinated proteins, and the precise targeted sites, has remained challenging. Here we employed quantitative-mass-spectrometry-based proteomics to generate a comprehensive atlas of citrullination sites within the HL60 leukemia cell line following differentiation into neutrophil-like cells. We identified 14,056 citrullination sites within 4,008 proteins and quantified their regulation upon inhibition of the citrullinating enzyme PADI4. With this resource, we provide quantitative and site-specific information on thousands of PADI4 substrates, including signature histone marks and transcriptional regulators. Additionally, using peptide microarrays, we demonstrate the potential clinical relevance of certain identified sites, through distinct reactivities of antibodies contained in synovial fluid from anti-CCP-positive and anti-CCP-negative people with rheumatoid arthritis. Collectively, we describe the human citrullinome at a systems-wide level, provide a resource for understanding citrullination at the mechanistic level and link the identified targeted sites to rheumatoid arthritis.

2.
Biomolecules ; 13(10)2023 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-37892198

RESUMO

Single-cell RNA sequencing (scRNA-seq) technology has significantly advanced our understanding of the diversity of cells and how this diversity is implicated in diseases. Yet, translating these findings across various scRNA-seq datasets poses challenges due to technical variability and dataset-specific biases. To overcome this, we present a novel approach that employs both an LLM-based framework and explainable machine learning to facilitate generalization across single-cell datasets and identify gene signatures to capture disease-driven transcriptional changes. Our approach uses scBERT, which harnesses shared transcriptomic features among cell types to establish consistent cell-type annotations across multiple scRNA-seq datasets. Additionally, we employed a symbolic regression algorithm to pinpoint highly relevant, yet minimally redundant models and features for inferring a cell type's disease state based on its transcriptomic profile. We ascertained the versatility of these cell-specific gene signatures across datasets, showcasing their resilience as molecular markers to pinpoint and characterize disease-associated cell types. The validation was carried out using four publicly available scRNA-seq datasets from both healthy individuals and those suffering from ulcerative colitis (UC). This demonstrates our approach's efficacy in bridging disparities specific to different datasets, fostering comparative analyses. Notably, the simplicity and symbolic nature of the retrieved gene signatures facilitate their interpretability, allowing us to elucidate underlying molecular disease mechanisms using these models.


Assuntos
Algoritmos , Análise de Célula Única , Humanos , Análise de Sequência de RNA , Perfilação da Expressão Gênica , Biomarcadores
3.
Sci Adv ; 9(37): eadi2687, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37703374

RESUMO

PARP14 is a mono-ADP-ribosyl transferase involved in the control of immunity, transcription, and DNA replication stress management. However, little is known about the ADP-ribosylation activity of PARP14, including its substrate specificity or how PARP14-dependent ADP-ribosylation is reversed. We show that PARP14 is a dual-function enzyme with both ADP-ribosyl transferase and hydrolase activity acting on both protein and nucleic acid substrates. In particular, we show that the PARP14 macrodomain 1 is an active ADP-ribosyl hydrolase. We also demonstrate hydrolytic activity for the first macrodomain of PARP9. We reveal that expression of a PARP14 mutant with the inactivated macrodomain 1 results in a marked increase in mono(ADP-ribosyl)ation of proteins in human cells, including PARP14 itself and antiviral PARP13, and displays specific cellular phenotypes. Moreover, we demonstrate that the closely related hydrolytically active macrodomain of SARS2 Nsp3, Mac1, efficiently reverses PARP14 ADP-ribosylation in vitro and in cells, supporting the evolution of viral macrodomains to counteract PARP14-mediated antiviral response.


Assuntos
COVID-19 , Transferases , Humanos , Inibidores de Poli(ADP-Ribose) Polimerases , Antivirais , Hidrolases , Poli(ADP-Ribose) Polimerases/genética
4.
Protein Sci ; 32(9): e4733, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37463013

RESUMO

Intrinsically disordered proteins (IDPs) are often multifunctional and frequently posttranslationally modified. Deleted in split hand/split foot 1 (Dss1-Sem1 in budding yeast) is a highly multifunctional IDP associated with a range of protein complexes. However, it remains unknown if the different functions relate to different modified states. In this work, we show that Schizosaccharomyces pombe Dss1 is a substrate for casein kinase 2 in vitro, and we identify three phosphorylated threonines in its linker region separating two known disordered ubiquitin-binding motifs. Phosphorylations of the threonines had no effect on ubiquitin-binding but caused a slight destabilization of the C-terminal α-helix and mediated a direct interaction with the forkhead-associated (FHA) domain of the RING-FHA E3-ubiquitin ligase defective in mitosis 1 (Dma1). The phosphorylation sites are not conserved and are absent in human Dss1. Sequence analyses revealed that the Txx(E/D) motif, which is important for phosphorylation and Dma1 binding, is not linked to certain branches of the evolutionary tree. Instead, we find that the motif appears randomly, supporting the mechanism of ex nihilo evolution of novel motifs. In support of this, other threonine-based motifs, although frequent, are nonconserved in the linker, pointing to additional functions connected to this region. We suggest that Dss1 acts as an adaptor protein that docks to Dma1 via the phosphorylated FHA-binding motifs, while the C-terminal α-helix is free to bind mitotic septins, thereby stabilizing the complex. The presence of Txx(D/E) motifs in the disordered regions of certain septin subunits may be of further relevance to the formation and stabilization of these complexes.


Assuntos
Proteínas de Ciclo Celular , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Ubiquitina-Proteína Ligases , Humanos , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Fosforilação , Ligação Proteica , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
5.
J Chem Inf Model ; 63(12): 3731-3741, 2023 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-37276140

RESUMO

We have developed an actor-critic-type policy-based reinforcement learning (RL) method to find low-energy nanoparticle structures and compared its effectiveness to classical basin-hopping. We took a molecule building approach where nanoalloy particles can be regarded as metallic molecules, albeit with much higher flexibility in structure. We explore the strengths of our approach by tasking an agent with the construction of stable mono- and bimetallic clusters. Following physics, an appropriate reward function and an equivariant molecular graph representation framework is used to learn the policy. The agent succeeds in finding well-known stable configuration for small clusters in both single and multicluster experiments. However, for certain use cases the agent lacks generalization to avoid overfitting. We relate this to the pitfalls of actor-critic methods for molecular design and discuss what learning properties an agent will require to achieve universality.


Assuntos
Aprendizagem , Reforço Psicológico , Movimento
6.
Mol Cell ; 83(7): 1075-1092.e9, 2023 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-36868228

RESUMO

A multitude of histone chaperones are required to support histones from their biosynthesis until DNA deposition. They cooperate through the formation of histone co-chaperone complexes, but the crosstalk between nucleosome assembly pathways remains enigmatic. Using exploratory interactomics, we define the interplay between human histone H3-H4 chaperones in the histone chaperone network. We identify previously uncharacterized histone-dependent complexes and predict the structure of the ASF1 and SPT2 co-chaperone complex, expanding the role of ASF1 in histone dynamics. We show that DAXX provides a unique functionality to the histone chaperone network, recruiting histone methyltransferases to promote H3K9me3 catalysis on new histone H3.3-H4 prior to deposition onto DNA. Hereby, DAXX provides a molecular mechanism for de novo H3K9me3 deposition and heterochromatin assembly. Collectively, our findings provide a framework for understanding how cells orchestrate histone supply and employ targeted deposition of modified histones to underpin specialized chromatin states.


Assuntos
Chaperonas de Histonas , Histonas , Humanos , Histonas/metabolismo , Chaperonas de Histonas/genética , Chaperonas de Histonas/metabolismo , Nucleossomos/genética , Proteínas de Ciclo Celular/metabolismo , DNA , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Proteínas Correpressoras/genética , Proteínas Correpressoras/metabolismo
7.
Res Sq ; 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36798347

RESUMO

Spaceflight poses a unique set of challenges to humans and the hostile Spaceflight environment can induce a wide range of increased health risks, including dermatological issues. The biology driving the frequency of skin issues in astronauts is currently not well understood. To address this issue, we used a systems biology approach utilizing NASA's Open Science Data Repository (OSDR) on spaceflown murine transcriptomic datasets focused on the skin, biomedical profiles from fifty NASA astronauts, and confirmation via transcriptomic data from JAXA astronauts, the NASA Twins Study, and the first civilian commercial mission, Inspiration4. Key biological changes related to skin health, DNA damage & repair, and mitochondrial dysregulation were determined to be involved with skin health risks during Spaceflight. Additionally, a machine learning model was utilized to determine key genes driving Spaceflight response in the skin. These results can be used for determining potential countermeasures to mitigate Spaceflight damage to the skin.

8.
Methods Mol Biol ; 2609: 251-270, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36515840

RESUMO

ADP-ribosylation is a posttranslational modification (PTM) that has crucial functions in a wide range of cellular processes. Although mass spectrometry (MS) in recent years has emerged as a valuable tool for profiling ADP-ribosylation on a system level, the use of conventional MS methods to profile ADP-ribosylation sites in an unbiased way remains a challenge. Here, we describe a protocol for identification of ADP-ribosylated proteins in vivo on a proteome-wide level, and localization of the amino acid side chains modified with this PTM. The method relies on the enrichment of ADP-ribosylated peptides using the Af1521 macrodomain (Karras GI, Kustatscher G, Buhecha HR, Allen MD, Pugieux C, Sait F, Bycroft M, Ladurner AG, EMBO J 24:1911-1920, 2005), followed by liquid chromatography-high-resolution tandem MS (LC-MS/MS) with electron transfer dissociation-based peptide fragmentation methods, resulting in accurate localization of ADP-ribosylation sites. This protocol explains the step-by-step enrichment and identification of ADP-ribosylated peptides from cell culture to data processing using the MaxQuant software suite.


Assuntos
Adenosina Difosfato Ribose , Espectrometria de Massas em Tandem , Cromatografia Líquida/métodos , Espectrometria de Massas em Tandem/métodos , Adenosina Difosfato Ribose/química , ADP-Ribosilação , Processamento de Proteína Pós-Traducional , Proteoma/metabolismo , Peptídeos/química
9.
Nat Commun ; 12(1): 5893, 2021 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-34625544

RESUMO

Despite the involvement of Poly(ADP-ribose) polymerase-1 (PARP1) in many important biological pathways, the target residues of PARP1-mediated ADP-ribosylation remain ambiguous. To explicate the ADP-ribosylation regulome, we analyze human cells depleted for key regulators of PARP1 activity, histone PARylation factor 1 (HPF1) and ADP-ribosylhydrolase 3 (ARH3). Using quantitative proteomics, we characterize 1,596 ADP-ribosylation sites, displaying up to 1000-fold regulation across the investigated knockout cells. We find that HPF1 and ARH3 inversely and homogenously regulate the serine ADP-ribosylome on a proteome-wide scale with consistent adherence to lysine-serine-motifs, suggesting that targeting is independent of HPF1 and ARH3. Notably, we do not detect an HPF1-dependent target residue switch from serine to glutamate/aspartate under the investigated conditions. Our data support the notion that serine ADP-ribosylation mainly exists as mono-ADP-ribosylation in cells, and reveal a remarkable degree of histone co-modification with serine ADP-ribosylation and other post-translational modifications.


Assuntos
Difosfato de Adenosina/metabolismo , Proteínas de Transporte/metabolismo , Glicosídeo Hidrolases/metabolismo , Proteínas Nucleares/metabolismo , ADP-Ribosilação , Proteínas de Transporte/genética , Linhagem Celular Tumoral , Dano ao DNA , Técnicas de Inativação de Genes , Glicosídeo Hidrolases/genética , Histonas/metabolismo , Humanos , Proteínas Nucleares/genética , Processamento de Proteína Pós-Traducional , Proteoma/metabolismo , Proteômica , Serina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...